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Abstract For a family A and a set Z , denote {A ∈ A : A ∩ Z �= ∅} by A(Z).
For positive integers n and r , let Sn,r be the trivial compressed intersecting family
{A ∈ ([n]

r

) : 1 ∈ A}, where [n] := {1, . . . , n} and
([n]

r

) := {A ⊂ [n] : |A| = r}.
The following problem is considered: For r ≤ n/2, which sets Z ⊆ [n] have the
property that |A(Z)| ≤ |Sn,r (Z)| for any compressed intersecting family A ⊂ ([n]

r

)
?

(The answer for the case 1 ∈ Z is given by the Erdős–Ko–Rado Theorem.) We give a
complete answer for the case |Z | ≥ r and a partial answer for the much harder case
|Z | < r . This paper is motivated by the observation that certain interesting results
in extremal set theory can be proved by answering the question above for particular
sets Z . Using our result for the special case when Z is the r -segment {2, . . . , r + 1},
we obtain new short proofs of two well-known Hilton–Milner theorems. At the other
extreme end, by establishing that |A(Z)| ≤ |Sn,r (Z)| when Z is a final segment,
we provide a new short proof of a Holroyd–Talbot extension of the Erdős-Ko-Rado
Theorem.
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1 Introduction

We start with some notation for sets. N is the set {1, 2, . . .} of all positive integers.
For any m, n ∈ N with m ≤ n, the set {i ∈ N : m ≤ i ≤ n} is denoted by [m, n].
For any integer n, [n] denotes [1, n] if n ≥ 1, and [n] is taken to be the empty set ∅
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if n ≤ 0. For a set X , the power set {A : A ⊆ X} of X is denoted by 2X . We denote
{A ⊆ X : |A| = r} by

(
X
r

)
, and {A ⊆ X : |A| ∼ r} by

(
X∼r

)
, where ∼ can be any of the

relations <,≤,≥,>.
We now develop some notation for families F of sets. Let F (r) := {F ∈ F : |F |

= r} and F (∼r) := {F ∈ F : |F | ∼ r}. Given a set X , let F(X) := {F ∈ F : F ∩ X �=
∅} and F(X) := {F ∈ F : F ∩ X = ∅}. For x ∈ X , we abbreviate the notation F({x})
and F({x}) to F(x) and F(x), respectively. Let F〈x〉 := {F\{x} : F ∈ F(x)}.

A family A is said to be intersecting if A ∩ B �= ∅ for any A, B ∈ A. If A ⊂ 2X

and there exists x ∈ X such that x ∈ A for all A ∈ A, then A is said to be centred
with centre x ; otherwise, A is said to be non-centred. For a ∈ ⋃

A∈A A, the centred
sub-family A(a) of A is said to be a star of A. Note that centred families are trivially
intersecting.

Suppose a1 < · · · < ar , b1 < · · · < br , A := {a1, . . . , ar }, B := {b1, . . . , br }.
If ai ≤ bi for i = 1, . . . , r , then we write A ≤ B, and if also a j < b j for some
j ∈ [r ], then we write A < B. A family A is said to be compressed if A ∈ A for any
A < B ∈ A.

Let i, j ∈ [n]. The well-known compression operation �i, j : 22[n] → 22[n]
(see [3])

is defined by

�i, j (A) := {δi, j (A) : A ∈ A, δi, j (A) /∈ A} ∪ {A ∈ A : δi, j (A) ∈ A},

where δi, j : 2[n] → 2[n] is defined by

δi, j (A) =
{

(A\{ j}) ∪ {i} if i /∈ A and j ∈ A;
A otherwise.

It is easy to see that a family A ⊆ 2[n] is compressed if and only if �i, j (A) = A
for any 1 ≤ i < j ≤ n. The paper [7] is an excellent survey on applications of the
compression (also known as shifting) technique.

We denote the compressed star {A ∈ ([n]
r

) : 1 ∈ A} and the non-centred compressed
intersecting family {A ∈ ([n]

r

) : 1 ∈ A, A ∩ [2, r + 1] �= ∅} ∪ {[2, r + 1]} by Sn,r and
Nn,r , respectively. We use the abbreviations S and N when n and r are clear from the
context.

The following are two classical results in the literature on set combinatorics.

Theorem 1 (Erdős-Ko-Rado (EKR) Theorem [3]) If r ≤ n/2 and A is an intersecting
sub-family of

([n]
r

)
, then |A| ≤ |S|.

Theorem 2 (Hilton–Milner Theorem [11]) If 2 ≤ r ≤ n/2 and A is a non-centred
intersecting sub-family of

([n]
r

)
, then |A| ≤ |N |.

The EKR Theorem inspired much research in extremal set theory that led to many
beautiful results; the survey paper by Deza and Frankl [2] is recommended. Two short
and beautiful proofs of this theorem are due to Daykin [1] and Katona [13]; Daykin’s
proof used a fundamental result known as the Kruskal–Katona Theorem [14,15], and
Katona’s proof introduced an elegant averaging technique referred to as the cycle
method. In this paper, we will expand on ideas found in the original proof.
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Theorem 2 is part of a more general result in [11], the proof of which is long and
complicated. Many shorter and simpler proofs were obtained (see, for example [8,9]),
and another one is given here.

In this paper, we pose the following question: Given r ≤ n/2, which sets Z ⊆ [2, n]
have the property—call it (*)—that |A(Z)| ≤ |S(Z)| for any compressed intersecting
family A ⊂ ([n]

r

)
? As we shall now explain, if any of the conditions is violated, then the

problem of maximising |A(Z)| is straightforward. If we allow Z ⊆ [n] then the answer
for the case 1 ∈ Z is given by Theorem 1; indeed, if 1 ∈ Z then |A(Z)| ≤ |S(Z)|
since |A(Z)| ≤ |A| ≤ |S| = |S(Z)|. If we allow A to be non-compressed, then we
take B to be a star of

([n]
r

)
whose centre is in Z and again apply Theorem 1 to obtain

|A(Z)| ≤ |A| ≤ |B| = |B(Z)|. If we allow A to be non-intersecting, then obviously
|A(Z)| is a maximum if A = ([n]

r

)
. And if we allow r > n/2, then in the case r > n/2

we have that
([n]

r

)
is intersecting and hence, since

([n]
r

)
is compressed, we can again

take A = ([n]
r

)
.

The above question is motivated by the fact that, as is shown in Sect. 3, certain inter-
esting results in extremal set theory such as Theorem 2 can be proved by obtaining an
affirmative answer to the question for certain sets Z .

As the following examples demonstrate, not all non-empty sets Z ⊆ [2, n] have
property (*):

(i) ∅ �= Z ⊆ [2, r + 1], n ≥ 2r : If A = N then |A(Z)| = |S(Z)| + 1.

(ii) ∅ �= Z ⊆ [2, 2r − 1], |Z | ≤ r, n = 2r : Let A := ([2r−1]
r

) = S(n) ∪ B,
where B := ([2,2r−1]

r

)
. So |A(Z)| − |S(Z)| = |B(Z)| − |S(n)(Z)| = ((

2r−2
r

) −(
2r−2−|Z |

r

)) − ((
2r−2
r−2

) − (2r−2−|Z |
r−2

)) = (2r−2−|Z |
r−2

) − (
2r−2−|Z |

r

)
> 0.

(iii) 2r ∈ Z ,∅ �= Z\{2r} ⊆ [2, r ], n = 2r : For i = 1, . . . , r , let Ai := [2, r ]∪{r+i}
and A′

i := [2r ]\Ai . Let A := (S\{A′
1, . . . , A′

r }) ∪ {A1, . . . , Ar }. So |A(Z)| =
|S(Z)| + 1.

Note that, in each of the examples above, A is non-centred, compressed and intersect-
ing.

By Theorem 2, if Z ⊆ ([2,n]
>r

)
then |A(Z)| ≤ |A| ≤ |N | < |S(Z)| for any non-

centred intersecting family A ⊂ ([n]
r

)
. So this settles the case |Z | > r ; however, we

will prove this directly and go on to obtain a new proof of Theorem 2. We will also
settle the special case |Z | = r . The case |Z | < r is far more challenging, and we will
not determine fully which of these sets obey or disobey (*); however, some of them
are captured by the following result.

Theorem 3 Let 2 ≤ r ≤ n/2, and let A be a compressed intersecting sub-family of([n]
r

)
. Let ∅ �= Z ⊆ [2, n] and Y := Z ∩[2r ]. Suppose that at least one of the following

holds:

(a) Y = ∅;
(b) |Z | ≤ r and Y > W := [2r ]\([2r − 2|Y |] ∪ Y );
(c) |Z | > r .

Then |A(Z)| ≤ |S(Z)|.

123



788 Graphs and Combinatorics (2011) 27:785–797

Moreover, we can have A non-centred and |A(Z)| = |S(Z)| if and only if

(i) r = 2 and either Z = Y �= {4} or {2, 3} ⊂ Z ∈ ([2,n]
3

)
, or

(ii) 2 < r = n/2 and Z ∩ [2, r + 1] �= ∅.

We point out that, if |Z | = r = n/2 and (b) does not hold, then (*) does not hold;
see Theorem 5 below. It is perhaps surprising that the case n = 2r is the tricky part of
the proof of Theorem 3.

We now make two observations that should make the statement of the theorem
easier to grasp:

– Suppose (b) holds. Let U := [2r ]\[2r − 2|Y |]. Clearly W ⊂ U . By definition
of < on members of

([n]
r

)
, we must have Y ⊂ U , because otherwise we get

|W | = 2r − (2r − 2|Y |) − |Y ∩ U | = 2|Y | − |Y ∩ U | > |Y |, which means that Y
and W are incomparable and hence contradicts Y > W . So |W | = |Y | = |U |/2,
W ∩ Y = ∅, and hence

Y ∪ W = U. (1)

– Clearly, if a compressed family is centred, then it must be a sub-family of S. So
A is non-centred if and only if A � S. We now determine the cases in which
|A(Z)| = |S(Z)| holds for compressed proper sub-families A of S. Let m :=
max{z : z ∈ Z} and S∗ := S\{A ∈ S : A\{1} ⊂ [n]\[m]}. S∗ �= S if and only if
m ≤ n −r +1. Also, S∗ is compressed and S∗(Z) = S(Z). If m ≤ n −r +1, then
take A∗ := {1, m}∪([n]\[n−r +2]), otherwise take A∗ := {1}∪([n]\[n−r +1]).
So A∗ ∈ S(Z) and A ≤ A∗ for any A ∈ S∗. Thus, if A ⊂ S and A(Z) = S(Z),
then A∗ ∈ A(Z) and hence S∗ ⊆ A (since A∗ ∈ S∗ and A is compressed).

If x1 < x2 < · · · < xn and m < n, then we call the set {xi : i ∈ [m + 1, n]} a final
(n − m)-segment of {x1, x2, . . . , xn}. A consequence of Theorem 3 is as follows.

Corollary 1 Let 2 ≤ r ≤ n/2, and let A be a compressed intersecting sub-family of
([n]

r ). Let Z be a final segment of [n]. Then |A(Z)| ≤ |S(Z)|.
Moreover, if A �= S, then |A(Z)| = |S(Z)| if and only if n = 2r , |Z | ≥ r and

|A| = |S|.
Proof We have Z = [m, n] for some 1 ≤ m ≤ n. Let Y := Z ∩ [2r ]. If Y = ∅ or
|Z | > r , then |A(Z)| ≤ |S(Z)| follows directly from Theorem 3. Suppose |Z | ≤ r
and Y �= ∅. Then r +1 ≤ m ≤ 2r and Y = [m, 2r ]. Let W := [2r ]\([2r −2|Y |]∪Y ).
So W = [m − |Y |, m − 1] and hence W < Y . So (b) of Theorem 3 holds and hence
|A(Z)| ≤ |S(Z)|.

We now prove the second part. Suppose A �= ∅. Since A is compressed, [r ] ∈ A∩S.
If n = 2r and |Z | ≥ r , then all sets in

([n]
r

)\{[r ]} intersect Z , and hence |A(Z)| =
|S(Z)| if we also have |A| = |S|. Conversely, suppose |A(Z)| = |S(Z)|. If A ⊆ S
then A(Z) = S(Z) and hence, since A is compressed and A < {1} ∪ [n − r + 2, n] ∈
S(Z) for all A ∈ S, we must actually have A = S. Suppose A � S. Then A is
non-centred. It follows from (i) and (ii) of Theorem 3 that n = 2r and |Z | ≥ r . By
Theorem 3, |A([2, n])| ≤ |S([2, n])| and hence |A| ≤ |S|. So actually |A| = |S|
since |A(Z)| = |S(Z)|, [r ] ∈ A ∩ S and all sets in

([2r ]
r

)\{[r ]} intersect Z . ��
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In Sect. 3, we will show that the following extension of the EKR Theorem follows
from the above corollary.

Theorem 4 (Holroyd, Talbot [12]) Let X1, . . . , X p be distinct non-empty finite sets
such that W := ⋂p

k=1 Xk �= ∅, Xi ∩ X j = W for any i, j ∈ [p] with i �= j , and
μ := min{|Xi | : i ∈ [p]} ≥ 4. Let A be an intersecting sub-family of U := ⋃p

i=1

(
Xi
r

)
,

where 2 ≤ r ≤ μ/2. Then:

(i) |A| ≤ |U(w)| for any w ∈ W ;
(ii) if r < μ/2 and A is non-centred, then the inequality in (i) is strict.

We mention that, in the literature, a family consisting of sets Xi as above is called
a sunflower or delta-system. A classical result about sunflowers is the Erdős–Rado
Theorem [4]. Sunflowers are used in the kernel method introduced in [10]; other
applications are given in [5,6]. The maximal independent sets of the union of a com-
plete multipartite graph and an empty graph form a sunflower; Holroyd and Talbot
expressed Theorem 4 in these graph-theoretical terms.

The next theorem settles our problem for the special case |Z | = r .

Theorem 5 Let Z ∈ ([2,n]
r

)
, 2 ≤ r ≤ n/2. Let A be a compressed intersecting sub-

family of
([n]

r

)
such that A(Z) is of largest size. If

(a) {2, 3} ⊆ Z and r ≤ 3, or
(b) n = 2r and [2r ]\Z ≮ Z, or
(c) Z = [2, r + 1],
then |A(Z)| = |S(Z)| + 1, otherwise |A(Z)| = |S(Z)|.

In Sect. 3, we use the above result to obtain a short proof of both Theorem 2 and
another Hilton–Milner result given by the following.

Theorem 6 (Hilton, Milner [11]) Let r ≤ n/2, and let A and B be non-empty sub-
families of

([n]
r

)
such that A ∩ B �= ∅ for any A ∈ A and B ∈ B. Let A0 = {A ∈([n]

r

) : A ∩ [r ] �= ∅} and B0 = {[r ]}. Then |A| + |B| ≤ |A0| + |B0| = (
n
r
)− (

n−r
r

)+ 1.

Two families A and B as in the above theorem are said to be cross-intersecting.
We now proceed to the proofs of Theorems 3 and 5.

2 Proofs of Main Results

We begin with a lemma concerning ordered pairs of sets in
([n]

r

)
.

Lemma 1 Let A, B ∈ ([n]
r

)
, and let C ⊆ A ∩ B. Then

A < B ⇔ A\C < B\C.

Proof Suppose A < B. We must prove that A\C < B\C .
Suppose C = {c}. We have A = {a1, . . . , ar } and B = {b1, . . . , br } for some

a1 < · · · < ar and b1 < · · · < br . Since A < B, c = ap = bq for some p ≥ q. If
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p = q then the result is immediate. Suppose p > q. Then A\{c} = {a∗
1 , . . . , a∗

r−1}
and B\{c} = {b∗

1, . . . , b∗
r−1}, where a∗

i := ai ≤ bi =: b∗
i for i = 1, . . . , q − 1, a∗

i :=
ai ≤ bi < bi+1 =: b∗

i for i = q, . . . , p − 1, and a∗
i := ai+1 ≤ bi+1 =: b∗

i for
i = p, . . . , r − 1. So A\C < B\C as required.

The result for general C follows by a simple inductive argument.
Conversely, suppose A\C < B\C . Let D := A\C, E := B\C . We have D < E

and must prove that D ∪ C < E ∪ C .
Suppose C = {c}. We have D = {d1, . . . , ds} and E = {e1, . . . , es} for some

d1 < · · · < ds and e1 < · · · < es . If c < d1 or c > es , then the result is immediate; so
we may assume that c ∈ [d1+1, es −1]. Let j := max{i ∈ [s] : di < c}, k := min{i ∈
[s] : c < ei }. Then D ∪ {c} = {d∗

1 , . . . , d∗
s+1} and E ∪ {c} = {e∗

1, . . . , e∗
s+1}, where

d∗
i := di for i = 1, . . . , j, d∗

j+1 := c, d∗
i := di−1 for i = j + 2, . . . , s + 1, e∗

i := ei

for i = 1, . . . , k −1, e∗
k := c, e∗

i := ei−1 for i = k +1, . . . , s +1. Note that k ≤ j +1
since D < E . If k = j + 1 then clearly d∗

i ≤ e∗
i , i = 1, . . . , s + 1, with at least one

strict inequality. If k < j + 1 then d∗
i = di ≤ ei = e∗

i for i = 1, . . . , k − 1, d∗
i =

di < c = e∗
k ≤ e∗

i for i = k, . . . , j, d∗
j+1 = c < e∗

j+1, and d∗
i = di−1 ≤ ei−1 = e∗

i
for i = j + 2, . . . , s + 1. So D ∪ C < E ∪ C as required.

The result for general C again follows by a simple inductive argument. ��
Lemma 2 If A is a compressed sub-family of 2[n] and Z , {a, b} ⊂ [n], a < b, then
|A(Z)| ≤ |A(δa,b(Z))|.
Proof Suppose Z ′ := δa,b(Z) �= Z . Taking Z ′′ := Z ∩ Z ′, we then have Z = Z ′′ ∪
{b} �= Z ′′ and Z ′ = Z ′′ ∪ {a} �= Z ′′. Since A is compressed, �a,b(A(Z ′′)(b)(a)) ⊆
A(Z ′′)(a)(b). So |A(Z ′′)(a)(b)| ≥ |A(Z ′′)(b)(a)|. We therefore have

|A(Z ′)| − |A(Z)| = (|A(Z ′′)| + |A(Z ′′)(a)|) − (|A(Z ′′)| + |A(Z ′′)(b)|)
= (|A(Z ′′)(a)(b)| + |A(Z ′′)(a)(b)|) − (|A(Z ′′)(b)(a)| + |A(Z ′′)(b)(a)|) ≥ 0,

and hence the result. ��
Proof of Theorem 3 It is easy to check the result for r = 2 because Nn,2 = ([3]

2

)
is the

only non-centred compressed intersecting sub-family of
([n]

2

)
.

We now consider r ≥ 3. We shall assume that

|A′(Z)| ≤ |A(Z)| for any compressed intersecting A′ ⊂ ([n]
r

)
. (2)

We need to prove two things:

(I) |A(Z)| = |S(Z)| and, if A is non-centred, then (ii) holds;
(II) if (ii) holds then there exists a non-centred compressed intersecting family

A′ ⊂ ([n]
r

)
such that |A′(Z)| = |S(Z)|.

Let us quickly verify (II). So suppose n = 2r (which gives Y = Z ) and Z ∩ [2, r +
1] �= ∅. Let A1 := [2, r+1] and A2 := {1}∪[r+2, . . . , 2r ]. We have N = (S\{A2})∪
{A1} and hence |N | = |S|. If |Z | > r then |N (Z)| = |N | = |S| = |S(Z)| trivially.
Suppose |Z | ≤ r . Then (b) holds, and this implies that 2r ∈ Z (see (1)) and hence
A2 ∩ Z �= ∅. Now we are given that Z ∩ A1 �= ∅. So |N (Z)| = |S(Z)|. Hence (II).
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We now prove (I) using induction on n.

Case 1: n = 2r . So Y = Z �= ∅.

Sub-case 1.1: |Z | > r . Having A intersecting means that [2r ]\A /∈ A for all A ∈ A,
and hence |A| ≤ 1

2

(
2r
r

) = (
2r−1
r−1

) = |S|. So this case is straightforward since here
A(Z) = A and S(Z) = S.

Sub-case 1.2: |Z | = r . So Z ∩ [2, r + 1] �= ∅. Suppose Z ∈ A. Then, since
[2r ]\Z = W < Z (by (b) and (1)) and A is compressed, we have [2r ]\Z ∈ A; but
this is a contradiction as A is intersecting. So Z /∈ A. Thus, since Z and [2r ]\Z are
both members of

([2r ]
r

)
that are not in A(Z), we have |A(Z)| ≤ 1

2

((
2r
r

)− 2
) = |S(Z)|

(note that (b) ⇒ Z > [2r ]\Z ⇒ 1 ∈ [2r ]\Z ⇒ {[2r ]\Z} = S(Z)), because having
A(Z) intersecting means that, for all A ∈ ([2r ]

r

)
, at most one of A and [2r ]\A is in

A(Z). By (2), |A(Z)| = |S(Z)|.
Sub-case 1.3: |Z | < r . Let A1 ∪ A2 be the partition of A(Z) with A1 := {A ∈

A(Z) : Z\A �= ∅} and A2 := {A ∈ A(Z) : Z ⊂ A}. Let S1 and S2 be defined
similarly. Let f : A1 → S1 be defined by f (A) := A if 1 ∈ A, and f (A) := [2r ]\A
if 1 /∈ A (A ∈ A1). So f is injective, because if 1 ∈ C ∈ A1, 1 /∈ D ∈ A1,
and f (D) = f (C), then [2r ]\D = C ∈ A, contradicting the assumption that A is
intersecting. Therefore |A1| ≤ |S1|.

Now consider A2, and suppose there exist C, D ∈ A2 such that (C ∩ D)\Z = ∅.
Thus, taking E := [2r ]\D and F := E\C , we have C\E = Z and F ⊂ [2r ]\Z . Note
that |F | = |([2r ]\D)\C | = |[2r ]\(C ∪ D)| = 2r −(|C |+|D|−|C ∩ D|) = |Z |. Since
Y = Z , we have W\F ⊂ W ⊂ [2r−2|Z |+1, 2r ] by (b), and F\W ⊂ [2r ]\(Z∪W ) =
[2r −2|Z |] by (1). So F\W ≤ W\F . By Lemma 1, F ≤ W . So we have E\C ≤ W <

Z = C\E , and hence Lemma 1 gives us E < C . Since A is compressed and C ∈ A,
we get E ∈ A, which is a contradiction because E ∩ D = ∅ and D ∈ A. Therefore

(C ∩ D)\Z �= ∅ for all C, D ∈ A2. (3)

Next, define X := {A\Z : A ∈ A2}. Let n′ := 2r − |Z | and r ′ := r − |Z |.
Let x1, . . . , xn′ be the distinct elements of [2r ]\Z listed in increasing order. Let g :
[2r ]\Z → [n′] such that g(xi ) := i , and let h : ([2r ]\Z

r ′
) → ([n′]

r ′
)

such that, if A is a set

{a1, . . . , ar ′ } in
([2r ]\Z

r ′
)
, then h(A) := {g(a1), . . . , g(ar ′)}. So g and h are bijections.

Let X ′ := {h(A) : A ∈ X }. By (3), X is intersecting and hence X ′ is intersecting. X ′
is also compressed because

A < B ∈ X ′ ⇒ C := h−1(A) < D := h−1(B) ∈ X
⇒ (C ∪ Z)\Z < (D ∪ Z)\Z ∈ X
⇒ C ∪ Z < D ∪ Z ∈ A2 (by Lemma 1)

⇒ C ∪ Z ∈ A2 (since A is compressed)

⇒ C ∈ X ⇒ A ∈ X ′.

123



792 Graphs and Combinatorics (2011) 27:785–797

Let Y := {A\Z : A ∈ S2} and Y ′ := {h(A) : A ∈ Y} = Sn′,r ′ . Now X ′ ⊆ ([n′]
r ′ ),

where 1 ≤ r ′ < n′/2 as |Z | < r = n/2. If r ′ = 1 then we trivially have X ⊆ Y .
If r ′ > 1 then we set Z ′ := [2, n′] and, since X ′ = X ′(Z ′) and Y ′ = Y ′(Z ′), we
apply the inductive hypothesis to obtain that |X ′| ≤ |Y ′|, and that equality holds only
if X ′ = Y ′. So |A2| ≤ |S2|, and equality holds only if A2 = S2. Since |A1| ≤ |S1|,
|A(Z)| ≤ |S(Z)|. By (2), |A(Z)| = |S(Z)|. So |A1| = |S1|, |A2| = |S2|, and hence
A2 = S2.

Suppose Z ∩ [2, r + 1] = ∅. So Z ⊆ [r + 2, 2r ] and hence, since A2 = S2, A∗ :=
{1}∪ [r +2, 2r ] is in A2. Since A is compressed and A ≤ A∗ for all A ∈ S, we obtain
S ⊆ A. Together with |A| ≤ |S| (see Sub-case 1.1), this gives us A = S.

Case 2: n > 2r . Let n′ := n − 1, r ′ := r − 1. We have A(n),S(n) ⊂ ([n′]
r

)
and

A〈n〉,S〈n〉 ⊂ ([n′]
r ′

)
. Note that r ≤ n′/2 and r ′ < n′/2 (as we now have r < n/2).

Also note that A〈n〉 and A(n) are compressed. We now show that A〈n〉 ∪ A(n) is
intersecting.

Suppose A ∩ B ∩ [n′] = ∅ for some A, B ∈ A. So A ∩ B = {n} (as A is inter-
secting). Since |A ∪ B| ≤ 2r − 1 < n′, [n]\(A ∪ B) �= ∅. Let a ∈ [n]\(A ∪ B).
Since A′ := (A\{n}) ∪ {a} < A and A is compressed, A′ ∈ A. But A′ ∩ B = ∅, a
contradiction. So A ∩ B ∩ [n′] �= ∅ for any A, B ∈ A, and hence A〈n〉 ∪ A(n) is
intersecting as required.

Sub-case 2.1: n /∈ Z . It is immediate from the inductive hypothesis that |A(n)(Z)| ≤
|S(n)(Z)| and |A〈n〉(Z)| ≤ |S〈n〉(Z)|. Since |A(Z)| = |A(n)(Z)| + |A〈n〉(Z)|, it
follows that |A(Z)| ≤ |S(Z)|. By (2), we actually have |A(Z)| = |S(Z)|, giving
|A(n)(Z)| = |S(n)(Z)| and |A〈n〉(Z)| = |S〈n〉(Z)|. It remains to show that A is
centred.

Consider |A〈n〉(Z)| = |S〈n〉(Z)|. Since r ′ < n′/2, it follows by the inductive
hypothesis that A〈n〉 is centred (note that conditions (a)–(c) imply that (i) can-
not hold for A〈n〉(Z)). So A〈n〉(Z) = S〈n〉(Z) as A〈n〉 is compressed. Hence
A(n)(Z) = S(n)(Z).

Let m := max{z : z ∈ Z}. If r > 3 then we take F1 to be the final (r − 3)-segment
for [n]\{1, m, n}; otherwise, we take F1 to be ∅. Let S1 := {1, m, n} ∪ F1 (recall that
we are dealing with r ≥ 3). Since Z ⊆ [2, n], if |Z | ≥ r + 1 then m ≥ r + 2. Suppose
|Z | ≤ r . If Y = ∅ then m > 2r , and if Y �= ∅ then, by (b) and (1), we have 2r ∈ Y ,
and hence m ≥ 2r . So we have m ≥ r + 2. Suppose that A is non-centred. Given
that A is compressed, we then have [2, r + 1] ∈ A, which is a contradiction because
[2, r + 1] ∩ S1 = ∅, S1 ∈ S(n)(Z) = A(n)(Z) and A is intersecting. So A is centred.

Sub-case 2.2: n ∈ Z . Suppose Z �= [2, n]. Let m′ := max{a : a ∈ [n]\Z} and
Z ′ := δm′,n(Z). So n /∈ Z ′. It is easy to check that Z ′ also satisfies one of (a), (b)
and (c). Therefore, as in Sub-case 2.1, we have |A(Z ′)| ≤ |S(Z ′)|, and equality holds
only if A is centred. Now |S(Z)| = |S(Z ′)| and, by Lemma 2, |A(Z)| ≤ |A(Z ′)|. So
|A(Z)| ≤ |S(Z)|. By (2), |A(Z)| = |S(Z)|. So |A(Z ′)| = |S(Z ′)| and hence A is
centred.

Now suppose Z = [2, n]. Then, by setting Z ′′ := Z\{n} and applying the induc-
tive hypothesis, we get |A(n)| = |A(n)(Z ′′)| ≤ |S(n)(Z ′′)| = |S(n)| and |A〈n〉| =
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|A〈n〉(Z ′′)| ≤ |S〈n〉(Z ′′)| = |S〈n〉|, and (since r ′ < n′/2) the latter inequality is an
equality only if A〈n〉(Z ′′) is centred and hence A〈n〉 = S〈n〉 (as A is compressed and
A〈n〉 = A〈n〉(Z ′′)). Now we have |A(Z)| = |A(n)| + |A〈n〉| ≤ |S(n)| + |S〈n〉| =
|S| = |S(Z)|. By (2), |A(Z)| = |S(Z)|. So |A〈n〉| = |S〈n〉| and hence A〈n〉 = S〈n〉.
Since r ′ < n′/2, for any A ∈ ([2,n′]

r

)
there exists B ∈ S〈n〉 such that A∩ B = ∅. Since

A〈n〉 ∪ A(n) is intersecting and A〈n〉 = S〈n〉, it follows that A(n) ⊂ S and hence
A ⊆ S. ��

We now come to the proof of Theorem 5, for which we need the following second
lemma concerning ordered pairs of sets in

([n]
r

)
.

Lemma 3 Let X be a finite subset of N, and let A, B ∈ (
X
r

)
. Then

A < B ⇔ X\B < X\A.

Proof (⇒) We use induction on |X | to prove that X\B < X\A if A < B. The case
|X | ≤ 2 is trivial. Consider |X | > 2. Suppose A < B. Let C := A ∩ B, Y := X\C .

Suppose C �= ∅. Let D := A\C, E := B\C . So D, E ∈ (
Y

r−|C|
)
. By Lemma 1,

D < E . By the inductive hypothesis, Y\E < Y\D. The result follows since Y\E =
X\B and Y\D = X\A.

Now suppose C = ∅. So |X | ≥ |A|+|B| = 2r . If |X | = 2r then X\B = A < B =
X\A. Suppose |X | > 2r . Let c ∈ X\(A∪B). Let Y := X\{c}, H := Y\B, I := Y\A.
By the inductive hypothesis, H < I . By Lemma 1, X\B = H ∪{c} < I ∪{c} = X\A.

(⇐) If X\B < X\A then, by the above, X\(X\A) < X\(X\B) and hence
A < B. ��
Proof of Theorem 5 For the same reason specified in the proof of Theorem 3, the case
r = 2 is straightforward. So we consider r ≥ 3.

We start by demonstrating the lower bound |S(Z)| + 1 ≤ |A(Z)| for each of the
cases (a), (b), (c). For case (a) (where r = 3), take A(a) := {A ∈ ([n]

3

) : |A ∩ [3]| ≥
2}. For case (b), take A(b) to be the union of A′

(b) := {A ∈ ([2r ]
r

) : A ≤ Z} and
A′′

(b) := S\B, where B = {B ∈ S : [2r ]\B ∈ A′
(b)}. For case (c), take A(c) := N . It

is straightforward that A(a) and A(c) are compressed and intersecting, and that they
attain the required lower bound. We now prove the less straightforward fact that the
same holds for A(b).

By definition of A′
(b), if A < B ∈ A′

(b) then A < B ≤ Z and hence A ∈ A′
(b); so

A′
(b) is compressed. Now suppose A < B ∈ A′′

(b). Then, by Lemma 3 and the defini-
tion of A′′

(b), we have [2r ]\A > [2r ]\B /∈ A′
(b) and hence, since A′

(b) is compressed,
[2r ]\A /∈ A′

(b). Also, A ∈ S since A < B ∈ A′′
(b) ⊂ S. So A ∈ A′′

(b), which proves
that A′′

(b) is compressed. Thus, as required, A(b) is compressed because clearly, in
general, the union of two compressed families is compressed.

Suppose A, B ∈ A(b). It is straightforward that if A ∈ A′′
(b) or B ∈ A′′

(b), then
A ∩ B �= ∅. Now suppose A, B ∈ A′

(b) and A ∩ B = ∅. Then A ≤ Z , B ≤ Z and
A = [2r ]\B. Applying Lemma 3, we get [2r ]\Z ≤ [2r ]\B = A ≤ Z , a contradiction
to (b). So A′

(b) is intersecting and hence A(b) is intersecting.
For any B ∈ B, the complement [2r ]\B of B is in A′

(b)\S. So |B| ≤ |A′
(b)\S|.

Let A ∈ A′
(b)\S. So 1 /∈ A, the complement A′ := [2r ]\A of A is in S, and hence
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A′ ∈ B since [2r ]\A′ = A ∈ A′
(b). So |A′

(b)\S| ≤ |B|. Together with |B| ≤ |A′
(b)\S|,

this gives us |B| = |A′
(b)\S|. Now |A(b)| = |A′′

(b)| + |A′
(b)\A′′

(b)| ≥ |S| − |B| +
|A′

(b)\S| = |S|. Since A(b) is intersecting, [2r ]\A ∈ ([2r ]
r

) \A(b) for any A ∈ A(b).

So |A(b)| ≤ 1
2

(
2r
r

) = |S|. Together with |A(b)| ≥ |S|, this gives us |A(b)| = |S|.
Now Z ′ := [2r ]\Z is the unique set in

([2r ]
r

)
that does not intersect Z , Z ′ ∈ S (as

Z ∈ ([2,n]
r

)
), and Z ′ /∈ A(b) (as Z ∈ A(b) and A(b) is intersecting). So |S(Z)| = |S|−1

and |A(b)(Z)| = |A(b)|. Since |A(b)| = |S|, |A(b)(Z)| = |S(Z)| + 1 as required.
The result now follows if we prove the upper bound |A(Z)| ≤ |S(Z)| + 1 and that

equality holds only if one of (a), (b) and (c) holds.

Case 1: n = 2r . It is immediate that therefore |A(Z)| ≤ |S| = |S(Z)| + 1
because |A| ≤ 1

2

(
2r
r

) = |S| (see proof of Theorem 3). Suppose (b) does not hold, i.e.
[n]\Z < Z . Then, by Theorem 3, |A(Z)| ≤ |S(Z)|. So |A(Z)| = |S(Z)| + 1 only if
(b) holds.

Case 2: n > 2r . As in the proof of Theorem 3, A(n) ⊂ ([n′]
r

)
(n′ = n − 1) and

A〈n〉 ⊂ ([n′]
r ′

)
(r ′ = r − 1) are compressed and intersecting, and A〈n〉 ∪ A(n) is

intersecting. Also recall that r ≤ n′/2 and r ′ < n′/2.

Sub-case 2.1: n /∈ Z . So Z ∈ ([2,n′]
r

)
. By the inductive hypothesis, we have

|A(n)(Z)| ≤ |S(n)(Z)| + 1. By Theorem 3, |A〈n〉(Z)| ≤ |S〈n〉(Z)| (as |Z | > r ′),
and equality holds only if either A〈n〉 is centred or r ′ = 2 and {2, 3} ⊂ Z (because
r ′ < n′/2 and, if r ′ = 2 and Z = Y := Z ∩ [2r ′], then Z = {2, 3, 4} since
|Z | = r ′ + 1). So |A(Z)| ≤ |S(Z)| + 1, and equality holds only if A〈n〉 ⊆ S〈n〉 (as
A〈n〉 is compressed) or (a) holds. Suppose |A(Z)| = |S(Z)|+1 and (a) is not the case.
So |A(n)(Z)| = |S(n)(Z)| + 1, |A〈n〉(Z)| = |S〈n〉(Z)| and A〈n〉 ⊆ S〈n〉. The last
two relations yield A〈n〉(Z) = S〈n〉(Z), and the first relation yields A(n) � S(n),
implying that A∗ := [2, r + 1] ∈ A(n) as A(n) is compressed. Suppose Z �= A∗.
Then, since A〈n〉(Z) = S〈n〉(Z), we can choose a set A′ in A〈n〉(Z) that does not
intersect A∗, but this is a contradiction because A〈n〉∪A(n) is intersecting. So Z = A∗,
i.e. (c) holds.

Sub-case 2.2: n ∈ Z . Let m := max{a : a ∈ [n]\Z} and Z ′ := δm,n(Z). So n /∈ Z ′
and clearly Z ′ does not satisfy (c). Thus, as we have shown in Sub-case 2.1, we get
|A(Z ′)| ≤ |S(Z ′)|+1, and equality holds only if {2, 3} ⊂ Z ′ and r ≤ 3, in which case
Z and r satisfy (a). The result follows since |S(Z)| = |S(Z ′)| and |A(Z)| ≤ |A(Z ′)|
by Lemma 2. ��

3 Theorems 2, 4, 6 from Theorems 3, 5

Two fundamental properties of a compression �i, j (i, j ∈ [n]) on a family A ⊆ 2[n]
are that |�i, j (A)| = |A| and that, if A is intersecting, then �i, j (A) is intersecting;
both are easy to check. Call �i, j a left-compression if i < j . Call �i, j a proper
compression on A if �i, j (A) �= A. It only takes a finite number of proper left-com-
pressions for a family A ⊂ 2[n] to become invariant under any left-compression (as
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the positive quantity
∑

A∈A
∑

i∈A i gets smaller after each proper left-compression),
in which case A is clearly compressed.

We now prove Theorems 6, 2 and 4 in the given order. Theorem 6 will be used for
proving Theorem 2.

Proof of Theorem 6 We may start by assuming that [r ] ∈ A. We now show that we
may also assume that [r ] ∈ B. Indeed, suppose [r ] /∈ B. Let A′ := {A ∪ {n + 1} : A
∈ A} and B′ := {B ∪ {n + 2} : B ∈ B}. Given that A and B are cross-intersect-
ing sub-families of

([n]
r

)
, C := A′ ∪ B′ is an intersecting sub-family of

([n+2]
r+1

)
. Let

B be a set {b1, . . . , br } in B; so B ′ := B ∪ {n + 2} is in B′. Let D be the family
obtained by applying the left-compressions �1,b1 , . . . ,�r,br to C. This clearly gives
us [r ] ∪ {n + 1}, [r ] ∪ {n + 2} ∈ D. By setting E := {D\{n + 1} : D ∈ D} and
F := {D\{n + 2} : D ∈ D}, we then obtain [r ] ∈ E ∩ F . Also note that E,F ⊂([n]

r

)
, |A| = |E |, |B| = |F |. Since C is intersecting, D is intersecting. Clearly we

therefore have that E and F are cross-intersecting. We may therefore assume that
A = E and B = F . So [r ] ∈ A ∩ B.

Let f : ([n]
r

) → ([3,n+2]
r

)
such that, if A is a set {a1, . . . , ar } in

([n]
r

)
, then f (A) :=

{a1+2, . . . , ar +2}. Let G := {{1}∪ f (A) : A ∈ A},H := {{2}∪ f (B) : B ∈ B}, I :=
{A ∈ ([n+2]

r+1

) : [2] ⊂ A}. Let J be the disjoint union G∪H∪I. So J is an intersecting

sub-family of
([n′]

r ′
)
, where n′ = n + 2 and r ′ = r + 1. We have r ′ ≤ n′/2 as r ≤ n/2.

We now apply proper left-compressions to J until we obtain a compressed family K.
Since [r ] ∈ A∩B, we have G := {1}∪[3, r ′ +1] and H := [2, r ′ +1] in J . Note that
{G, H}∪I is a compressed family and hence it is contained in K. Having determined
that [2, r ′ + 1] ∈ K and hence K = K([2, r ′ + 1]) (since K is intersecting), we can
now apply Theorem 5 to obtain |K| ≤ |Sn′,r ′([2, r ′ + 1])| + 1 = (

n+1
r

) − (
n−r

r

) + 1.
Since |K| = |J | = |G| + |H| + |I| = |A| + |B| + ( n

r−1
)
, the result follows. ��

Lemma 4 Let 2 ≤ r ≤ n/2, and let A be a non-centred intersecting sub-family of([n]
r

)
. Let i, j ∈ [n], i �= j , and suppose that �i, j (A) is centred. Then |A| ≤ |N |.

Proof HavingAnon-centred and�i, j (A) centred implies thatA = A({i, j}),A(i)( j)
�= ∅ and A(i)( j) �= ∅. So |A| = |A(i)( j)| + |A〈i〉( j)| + |A(i)〈 j〉| with A〈i〉( j)
and A(i)〈 j〉 being non-empty sub-families of

([n]\{i, j}
r−1

)
. Given that A is intersecting,

A〈i〉( j) and A(i)〈 j〉 are cross-intersecting. By Theorem 6, |A〈i〉( j)| + |A(i)〈 j〉| ≤(
n−2
r−1

) − (
n−r−1

r−1

) + 1. Since |A(i)( j)| ≤ (
n−2
r−2

)
and |N | = (

n−1
r−1

) − (
n−r−1

r−1

) + 1, the
result follows. ��
Proof of Theorem 2 We apply proper left-compressions to A until we obtain a family
A∗ such that A∗ is invariant under any left-compression. If A∗ is non-centred, then
[2, r + 1] ∈ A∗ and hence the result follows by Theorem 5. If A∗ is centred, then the
result follows by Lemma 4. ��

We now start working towards the proof of Theorem 4. We shall first develop some
further notation.

Let a := |W |, and let w1,…, wa be the elements of W . For i ∈ [p], let Vi := Xi\W
and bi := |Vi |, and let vi1,…, vibi be the elements of Vi ; for the purpose of the
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left-compression operation, we put the elements of Xi in the order w1 < · · · < wa <

vi1 < · · · < vibi .
For A ⊂ U , let A(i) := {A ∈ A : A ⊂ Xi } and Ai := A(i)(Vi ), i = 1, . . . , p.
We will use the following lemma when dealing with the extremal cases in Theo-

rem 4; we will prove this lemma later.

Lemma 5 Let A be as in Theorem 4. Suppose r < μ/2 and, for some i ∈ [p] and
x, y ∈ Xi , �x,y(A) is a star of U of size |U(w1)|. Then A is a star of U whose centre
is in W .

Proof of Theorem 4 We apply a composition of compressions �x,y, x, y ∈ X1, x <

y, to A until A(1) is compressed. We then repeat this procedure for A(2),…, A(p) in
the given order, and it is easy to see that after the i’th procedure we get that A( j) is
compressed for all j ∈ [i]. Clearly A remains intersecting and A(1), . . . ,A(p) become
compressed.

Clearly the families A(1),A2, . . . ,Ap partition A. Let J := U(w1). Since 2 ≤
r ≤ μ/2, by taking X1 and X ′

1 := X1\{w1} to represent [n] and Z respectively
in Corollary 1, we get |A(1)| = |A(1)(X ′

1)| ≤ |J(1)(X ′
1)| = |J(1)|. Similarly, for

i = 2, . . . , p, by taking Xi and Vi to represent [n] and Z respectively in Corollary 1,
we get |Ai | ≤ |Ji |. So |A| ≤ |J | and hence (i).

Suppose r < μ/2 and A( j) �= J( j) for some j ∈ [p]. Taking Z ′ to be X ′
1 or Vj ,

depending on whether j = 1 or j > 1 respectively, Corollary 1 gives us |A( j)(Z ′)| <

|J( j)(Z ′)|. So |A| < |J |. Lemma 5 ensures that if A is initially non-centred, then the
compressions mentioned above do not change A to J . Hence (ii). ��

We now come to the proof of Lemma 5, for which we need the lemma below that
is often useful for determining the structure of extremal intersecting families.

Lemma 6 Suppose ∅ �= A ⊆ (
X
r

)
, 2r < n := |X |, such that, if A ∈ A and B ∈

(
X\A

r

)
, then B ∈ A. Then A = (

X
r

)
.

Proof Let A ∈ A. Let B be an arbitrary set in
(

X
r

)
that intersects A on exactly r − 1

elements. Since n ≥ 2r + 1, we can choose C ∈ (
X
r

)
such that C is disjoint from

A ∪ B. By the assumption of the proposition, we have C ∈ A, which in turn implies
B ∈ A. Repeated application of this step gives us that any set in

(
X
r

)
is in A. ��

Lemma 7 Let A be as in Theorem 4. Suppose U( j)(x) ⊆ A( j) for some x ∈ ⋃p
i=1 Xi

and j ∈ [p]. Then A ⊆ U(x).

Proof Since U( j)(x) ⊆ A( j) and |X j | ≥ μ ≥ 2r , for all B ∈ U\U(x) we can find
A ∈ A( j) such that A ∩ B = ∅. Since A is intersecting, the result follows. ��

Proof of Lemma 5 Let c be the centre of �x,y(A). So �x,y(A) = U(c). Clearly
the stars of U of largest size are those whose centres are in W . Thus, since |U(c)| =
|U(w1)|, c ∈ W . Let J := U (c) and K := U(y).

Suppose y /∈ X j for some j ∈ [p]. Then, since �x,y(A) = U(c), we have A( j) =
J( j) and hence, by Lemma 7 and the fact that |A| = |�x,y(A)| = |J |,A = J . So
we now assume that y ∈ Xi for all i ∈ [p], i.e. y ∈ W . If A = J then we are done, so
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we assume that A �= J . Together with �x,y(A) = J , this clearly implies that c = x .
So �x,y(A) = J = U(x). Our next observation is that

A1, A2 ∈ K\J , A1 ∈ A, A1 ∩ A2 = {y} ⇒ A2 ∈ A (4)

because otherwise, since �x,y(A) = J , we get δx,y(A2) ∈ A and A1 ∩ δx,y(A2)

= ∅, which is a contradiction as A is intersecting.
If A ∈ J ∩ K then A = δx,y(A). So J ∩ K ⊂ A. Since A �= J = �x,y(A),

there exists B ∈ A such that δx,y(B) �= B. So B ∈ K\J . We have B ⊂ X j for
some j ∈ [p]. Let Y := X j\{x} and Y := {A ∈ (

Y
r

) : y ∈ A}. Let Z := Y\{y}
and B := {A\{y} : A ∈ A ∩ Y} ⊆ (

Z
r−1

)
. Since B\{y} ∈ B and A ∩ Y ⊆ K\J , it

follows by (4) and Lemma 6 that B = (
Z

r−1

)
. So Y ⊂ A and hence, since we also have

J ∩ K ⊂ A, K( j) ⊆ A( j). By Lemma 7, A ⊆ K. Since |K| = |J | = |A|,A = K. ��
Acknowledgments The author is grateful to an anonymous referee for checking the paper carefully. The
author also wishes to thank Fred Holroyd for providing helpful comments, particularly for communicating
an improved version of the original proof of Lemma 1.
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